1 package com.jed.state;
2
3 import com.jed.actor.AbstractEntity;
4 import com.jed.actor.Ball;
5 import com.jed.actor.CircleBoundary;
6 import com.jed.core.MotherBrainConstants;
7 import com.jed.core.QuadTree;
8 import com.jed.util.Rectangle;
9 import com.jed.util.Vector2f;
10 import org.slf4j.Logger;
11 import org.slf4j.LoggerFactory;
12
13 import javax.annotation.Nonnull;
14 import java.util.ArrayList;
15 import java.util.List;
16 import java.util.Random;
17 import java.util.Stack;
18
19
20
21
22
23
24
25
26 public class DiscoState extends AbstractGameState {
27
28
29
30
31 private static final Logger LOGGER = LoggerFactory.getLogger(DiscoState.class);
32
33
34
35
36 private QuadTree quadTree;
37
38
39
40
41 private Stack<Ball> scene;
42
43
44
45
46 private int width;
47
48
49
50
51 private int height;
52
53 @Override
54 public void entered() {
55 width = MotherBrainConstants.WIDTH;
56 height = MotherBrainConstants.HEIGHT;
57
58 scene = new GameEntityStack<>();
59 quadTree = new QuadTree(new Vector2f(0, 0), 0, new Rectangle(width, height), this);
60
61 Random rand = new Random();
62
63 int randW, randH, randR;
64 float randXS, randYS, randRed, randGreen, randBlue;
65
66 for (int i = 0; i < 25; i++) {
67 randW = rand.nextInt(1024) + 1;
68 randH = rand.nextInt(768) + 1;
69 randR = rand.nextInt(25) + 1;
70 randXS = rand.nextFloat() * 2;
71 randYS = rand.nextFloat() * 2;
72 randRed = rand.nextFloat();
73 randGreen = rand.nextFloat();
74 randBlue = rand.nextFloat();
75
76 Ball newBall = new Ball(
77 new Vector2f(randW, randH),
78 new Vector2f(randXS, randYS),
79 new CircleBoundary(randR),
80 25,
81 randRed, randGreen, randBlue);
82 scene.push(newBall);
83 }
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139 }
140
141 @Override
142 public void update() {
143 quadTree.clear();
144 scene.forEach(quadTree::insert);
145 handleCollisions();
146 }
147
148 @Override
149 public void render() {
150 quadTree.render();
151 scene.forEach(Ball::render);
152 }
153
154
155
156
157 private void handleCollisions() {
158 boolean collide = false;
159 final List<AbstractEntity> returnObjects = new ArrayList<>();
160 for (Ball aScene : scene) {
161 quadTree.retrieve(returnObjects, aScene);
162 for (AbstractEntity returnObject : returnObjects) {
163 if (!returnObject.equals(aScene)) {
164 final Ball p2 = (Ball) returnObject;
165 if (detectCollision(aScene, p2)) {
166 if (!collide) {
167 LOGGER.debug("Handling Collisions");
168 collide = true;
169 }
170 collide(aScene, p2);
171 }
172 }
173 }
174 returnObjects.clear();
175 }
176
177
178 for (Ball each : scene) {
179 double yPosition = each.getPosition().y;
180 double xPosition = each.getPosition().x;
181 float radius = each.getRadius();
182
183
184
185
186
187 if (yPosition + radius >= height) {
188 each.getMovement().y = each.getMovement().y * -1;
189 each.getPosition().y = height - each.getRadius();
190 } else if (yPosition - radius <= 0) {
191 each.getMovement().y = each.getMovement().y * -1;
192 each.getPosition().y = each.getRadius();
193 }
194
195 if (xPosition + radius >= width) {
196 each.getMovement().x = each.getMovement().x * -1;
197 each.getPosition().x = width - each.getRadius();
198 } else if (xPosition - radius <= 0) {
199 each.getMovement().x = each.getMovement().x * -1;
200 each.getPosition().x = each.getRadius();
201 }
202 }
203 }
204
205
206
207
208
209
210
211 private boolean detectCollision(@Nonnull Ball p1, @Nonnull Ball p2) {
212
213
214
215
216
217 Vector2f mv = p1.getMovement().subtract(p2.getMovement());
218
219
220
221
222
223
224
225 double dist = p1.getPosition().distance(p2.getPosition());
226 double sumRadii = p1.getRadius() + p2.getRadius();
227 dist -= sumRadii;
228 double mvMagnitude = mv.magnitude();
229 if (mvMagnitude < dist) {
230 return false;
231 }
232
233
234
235
236 Vector2f c = p2.getPosition().subtract(p1.getPosition());
237
238
239
240
241 Vector2f mvN = mv.normalize();
242
243
244
245
246
247
248
249 double d = mvN.dotProduct(c);
250 if (d <= 0) {
251 return false;
252 }
253
254
255
256
257
258
259
260 double lengthC = c.magnitude();
261 double f = (lengthC * lengthC) - (d * d);
262
263 double sumRadiiSquared = sumRadii * sumRadii;
264 if (f >= sumRadiiSquared) {
265 return false;
266 }
267
268
269
270
271
272
273
274 double t = sumRadiiSquared - f;
275
276
277
278
279
280
281
282 if (t < 0) {
283 return false;
284 }
285
286
287
288
289
290 double mvDistance = d - Math.sqrt(t);
291
292
293
294
295
296
297 if (mvMagnitude < mvDistance) {
298 return false;
299 }
300
301
302
303
304
305
306 LOGGER.debug("result = " + mv.magnitude() / p1.getMovement().magnitude());
307 return true;
308 }
309
310
311
312
313
314
315 private void collide(@Nonnull Ball p1, @Nonnull Ball p2) {
316
317
318 Vector2f n = (p1.getPosition().subtract(p2.getPosition())).normalize();
319
320
321
322
323
324 double a1 = p1.getMovement().dotProduct(n);
325 double a2 = p2.getMovement().dotProduct(n);
326
327 double optimizedP = (2.0 * (a1 - a2)) / (p1.mass() + p2.mass());
328
329
330
331 Vector2f v1 = p1.getMovement().subtract(n.scale((float) (optimizedP * p2.mass())));
332
333
334
335 Vector2f v2 = p2.getMovement().add(n.scale((float) (optimizedP * p1.mass())));
336
337 p1.setMovement(v1);
338 p2.setMovement(v2);
339 }
340 }